GLOSSAIRE SYMBOLES

C: couple appliqué N.m.Rad-1 C₀: couple maximum appliqué N.m.Rad-1 C_c: capacité thermique massique kJ.kg⁻¹ C_{ν}^{\cdot} : constante N.m.Rad-1 Cn: s-n.tours-n.mnn constante expérimentale du malaxeur D: diamètre d'une conduite tubulaire sans dimension DTS: distribution des temps de séjour variation de vitesse m.s⁻¹ dv: dv: variation de l'entrefer m E : énergie d'activation -viscosité Newtonienne-J.mol⁻¹ e : longueur équivalente de capillaire m EA7030: formulation complexe: EVA8-HOSTAFLAM AP 750 70 / 30 (% P/P) EAP5140: formulation complexe: EVA8-HOSTAFLAM AP 422-PA6 60 / 33.3 / 6.7 (% P/P) EVA8: copolymère polyéthylène-acétate de vinyle à 8 % P/P E_k: énergie d'activation relative à la consistance K J.mol⁻¹ $E_{\scriptscriptstyle \gamma}^{\centerdot}$: énergie d'activation -viscosité à gradient de vitesse constant-J.mol⁻¹ E_{τ} : énergie d'activation -viscosité à contrainte de cisaillement constante- J.mol $^{-1}$ F: force Pa F(t): DTS cumulée sans dimension G: module de rigidité Pa module de perte, partie imaginaire de la rigidité complexe G* Pa G''_{ω} : module de perte pour une vitesse angulaire ω , partie imaginaire de la rigidité complexe G* Pa G* : module complexe Pa module de conservation, partie réelle de la rigidité complexe G* Pa G'_{ω} : module de conservation pour une vitesse angulaire ω , partie réelle de la rigidité complexe G* Pa

module de rigidité pour un solide élastique parfait

Pa

h:	entrefer, système plan plan ou filière plate	m	
H :	longueur du cylindre intérieur droit de base circulaire	m	
J ₀ :	complaisance d'un solide élastique parfait	Pa ⁻¹	
K :	consistance	Pa.s ⁿ	
K_0 :	constante	Pa.s ⁿ	
K ₁ , K	₂ , K ₃ : constantes d'appareil	sans dimension	
L:	longueur des filières capillaires ou plates	m	
n:	indice de pseudoplasticité	sans dimension	
N_1 :	première différence de contraintes normales	Pa	
N_2 :	deuxième différence de contraintes normales	Pa	
PA6	polyamide 6		
PEHI	D: polyéthylène haute densité		
PVC	: Polychlorure de vinyle		
P _H :	pression hydrostatique du système	Pa	
Ps:	pression de sortie	Pa	
Q _D :	débit de drainage	$\mathrm{m}^3\mathrm{s}^{\text{-1}}$	
Q _P :	débit de contre pression	$\mathrm{m}^3\mathrm{s}^{\text{-1}}$	
Q _T :	débit volumique total	$\mathrm{m}^3\mathrm{s}^{\text{-1}}$	
$Q_{\scriptscriptstyle u}$:	débit volumique	$\mathrm{m}^3\mathrm{s}^{\text{-1}}$	
R:	constante des gaz parfaits	8.31 J.mol ⁻¹ .K ⁻¹	
R ₁ :	rayon du cylindre intérieur droit de base circulaire	m	
R ₂ :	: rayon de la chemise cylindrique extérieure droite de base circulaire m		
R _c :	rayon du capillaire	m	
R _p :	rayon du plan	m	
S:	surface	m^2	
T:	température absolue	K	
tanδ	tangente de perte	sans dimension	
V :	vitesse de rotation	tours.mn ⁻¹	
V_{max}	vitesse maximale du fluide dans l'écoulement	m.s ⁻¹	
V_{min} :	vitesse minimale	m.s ⁻¹	
V_{moy}	vitesse moyenne du fluide dans l'écoulement	m.s ⁻¹	
W :	largeur	m	
X :	rayon équivalent, constante expérimentale du malaxeur	m	

y:	entrefer	m
Y:	constante expérimentale du malaxeur	sans dimension
ρ :	masse volumique	kg.m ⁻³
$\dot{\gamma}$:	gradient de vitesse	s ⁻¹
$oldsymbol{\eta}_{\scriptscriptstyle 0}$:	viscosité à cisaillement nul -premier plateau Newtonien-	Pa.s
$\eta_{\scriptscriptstyle \infty}$:	viscosité à cisaillement infini –deuxième plateau Newtonien	- Pa.s
$oldsymbol{\eta}_{\scriptscriptstyle N}$:	constante	Pa.s
$ au_{ extit{crit}}$:	contrainte critique de cisaillement à partir de laquelle appar	aissent les défauts
d'extr	usion	Pa
$\eta_{\gamma}^{.}$: constante	Pa.s
$\eta_{\scriptscriptstyle au}$:	constante	Pa.s
$oldsymbol{\eta}_{\scriptscriptstyle 1}$:	viscosité à la température T ₁	Pa.s
$\eta_{\scriptscriptstyle 2}$:	viscosité à la température T ₂	Pa.s
σ :	tenseur de contrainte	Pa
σ_{xy} :	tenseur de la contrainte s'exerçant dans la directio	n x sur un plan
perpe	ndiculaire à l'axe y	Pa
$ au_{\scriptscriptstyle 0}$:	amplitude maximale de la contrainte	Pa
$\gamma_{\scriptscriptstyle 0}$:	amplitude maximum du déplacement	sans dimension
$\stackrel{ullet}{\gamma}^*$:	gradient de vitesse complexe	s ⁻¹
η:	viscosité	Pa.s
τ:	contrainte de cisaillement	Pa
υ:	viscosité cinématique	$m^2.s^{-1}$
Ψ:	angle du cône	Rad
α :	facteur de correction d'énergie cinétique	sans dimension
γ :	déplacement	sans dimension
δ :	angle de perte	0
ω :	vitesse angulaire	Rad.s ⁻¹

η":	viscosité, partie réelle de la viscosité complexe η*	Pa.s
$\Delta\eta$:	variation de viscosité	Pa.s
η^{\star} :	viscosité complexe	Pa.s
τ^{\star} :	contrainte de cisaillement complexe	Pa
η':	viscosité dynamique, partie réelle de la viscosité complexe η	* Pa.s
φο:	déplacement angulaire maximum	sans dimension
τ_{c} :	seuil de contrainte ou seuil d'écoulement	Pa
ΔL :	variation de la longueur du capillaire	L
ΔP :	différence de pression aux extrémités du tube	Pa
ΔP_{corr}	: variation corrigée de pression	Pa
ΔT :	variation de température	K